回归模型拟合
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
X = df[['clients', 'size']].values
y = df['p99'].values
model = LinearRegression().fit(X, y)
print('R²:', r2_score(y, model.predict(X)))
plt.scatter(df['clients'], y, label='P99真实')
plt.scatter(df['clients'], model.predict(X), label='P99预测')
plt.xlabel('并发数'); plt.ylabel('延迟(ms)'); plt.legend(); plt.show()